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LETTER TO THE EDITOR 

Exact solution for vacuum Bianchi type I11 model with a 
cosmological constant 

A Moussiauxt, P Tombalt and J DemaretS 
t DBpartement de Physique, Facu1tS.s Universitaires, Namur, Belgium 
I Institut d’Astrophysique, UniversitC de Likge, Cointe-Ougree, Belgium 

Received 10 June 1981 

Abstract. An exact analytic particular solution for a vacuum Bianchi type I11 model with a 
cosmological constant A is derived: its properties are briefly discussed. In particular, the 
solution for A < 0 describes an anisotropic spatially homogeneous model evolving from a 
pancake singularity towards a barrel singularity. 

Up to now, as far as we know (cf Kramer et a1 1980), no exact analytic solution of 
Einstein’s field equations for vacuum Bianchi type I11 models with a cosmological 
constant has been obtained. 

This anisotropic spatially homogeneous cosmological model, which is of type 
VIh ( h  = -1) in the classification of Ellis and MacCallum (1969) (cf MacCallum (1979) 
for a recent review of the mathematics of Bianchi cosmologies), admits (as shown by 
MacCallum (1972)) a diagonal metric, i.e. it can be written in the following form in a 
synchronous coordinate system (with c = 1) 

(1) ds 2 = -dt2+Y,,(t)w‘w’ 

where n ( t )  is a diagonal matrix, the components of which are functions of time only. 
w l ,  w 2  and w 3  are 1-forms given in the case of a Bianchi type I11 model by (cf Ryan 

and Shepley 1975) 

(2) 
1 2 3 3 1 

w = exp(-2aox1) dx2 w =dx  w =dx  

where xl ,  x2  and x3 denote the space coordinates and a. is a constant different from 
zero. The 1-forms obey the relations (i, j = 1,2 ,  3) 

(3) 
k dw’ = ;C:kwJ x w 

where, in the case of a Bianchi I11 model, the structure constants of the simply transitive 
group of motions acting on the surfaces of homogeneity, i.e. the c : k ,  are given by 

c:3 = -et1 = 1 = 0 i # 1, ( j ,  k )  # (1,3) or (3, 1). (4) 
A diagonal metric is possible for this model of class B (C:, # 0) since, in this case, n:  = 0, 
when n” is given by 

( 5 )  I /  = + c t l E 1 ) k l  

where &,,k is the Levi-Civita tensor and the symbol ( 
tensor. 

) is the usual symmetrisation 
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The explicit form of a diagonal metric for a Bianchi I11 model is then: 

ds2 = -dt2 + (y1)2(dx')2 + ( y2 )2  e ~ p ( - 4 a ~ x ' ) ( d x ~ ) ~ +  (y3)2(d~3)2  (6) 

where yl, y2 and y3 are functions of time only. 
The introduction of a new time-variable, T ,  defined by (cf Joseph 1966) 

takes the metric (6) into the following form 

ds2 = (A1)2[-dT2 + (dxl)'] + (A2)' e x p ( - 4 ~ ~ x ~ ) ( d s ~ ) ~  + (A3)2(d~3)2  (8) 

where the A i  denote the yi written as functions of T.  The field equations for a vacuum 
model of this type, with a cosmological constant, A, different from zero, are given by 

2 
2 A, A, A ,  

-4ao +-+-- -AA: = (I 
A 2  A i  (x) 

where the dot on a quantity denotes its first derivative with respect to T.  

Note that these equations have been obtained by using a REDUCE algebraic 
computational program (a general table obtained in this way and giving the field 
equations for all Bianchi models (diagonal and non-diagonal) in a synchronous coor- 
dinate system is in preparation (cf Moussiaux 1981). 

A careful examination of the system of differential equations (9) leads to the 
following independent equations for the three variables A I ,  A 2  and A3: 

Equation (loa) is, in fact, a Bernoulli-type differential equation, the solution of which 
can be written as (y = A1/2ao) 

dY 
(y2  + Cy +3Ay4)1'2 

2Uo(T - T o )  = 

where T~ and C are arbitrary constants. 
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In the particular case of A = 0 and C # 0, integration of (1 l ) ,  ( lob)  and (1Oc) leads to 
the following solution for a vacuum Bianchi 111 model (A = 0), a particular case ( h  = -1) 
of the solution derived by Ellis and MacCallum (1969) for a Bianchi type VIh model, i.e. 

Al = AZ = (sinh 2ao.r)(tanh ao7) A3 = (tanh ao7)-’. (12) 

Putting C = 0 in ( l l ) ,  it is possible to integrate its right-hand side and to derive an 
explicit solution for A1, which then enables one to solve (106) and ( 1 0 ~ ) .  

We distinguish, in the final solution obtained in this way, two subcases correspond- 
ing respectively to A > 0 and A < 0. The corresponding metrics are written as: 

( a )  A > O .  

12a i  
IAl{sinh [2a0(7 - 70)lI ds2 = 2 [-d72 + (dx ’)’ + e ~ p ( - 4 a ~ x ’ ) ( d x ~ ) ~ ]  

where integration constants have been incorporated in new variables x ’ ~ ,  xf3  which have 
been relabelled as x 2  and x 3 ,  respectively. 

( b )  h<O. 

+{tanh [2a0(7 - ~o)]}2(dx3)2. (13b) 
The particular solution corresponding to C = 0 leads to the following metric, in the case 
of a null cosmological constant (not included in Ellis and MacCallum’s solution (12)): 

ds2 = 4 a i  exp[4ao(7 - 70)][-d72 + (dx’)’+ e ~ p ( - 4 a ~ x ’ ) ( d x ~ ) ~ ] +  (dx3)’. (13c) 

Note that the preceding solutions can also be derived directly in a synchronous 
coordinate system, using, for instance, Misner’s (1969) parametrisation of the diagonal 
matrix yij (cf the appendix of Collins (1971) for a vacuum solution for the model VII, 
(with A = 0), in this coordinate system). 

The solution (13a) for A >  0 corresponds to an anisotropic spatially homogeneous 
model beginning at t = 0 by a barrel-type singularity (with the x 3  axis defining the 
privileged direction of the barrel) and expanding monotonically towards infinity as 
t + CO; t denotes the proper time, i.e. the synchronous time coordinate, related to the T 
time by 

(14) t = -(3/lAl)1’2 ln{tanh [a0(7 - T ~ ) ] } .  

The solution (13b) for A <  0 corresponds to an anisotropic spatially homogeneous 
model beginning at proper time t = 0 by a pancake (with the 1- and 2-axes dis- 
tinguished) singularity and collapsing after a proper time t ,  = (3/lAl)1’z~v, towards a 
barrel (with the 3-axis distinguished) singularity; t is given by: 

(15) t = (3/lA1)1’2 tan-’ {sinh [2ao(7 - ?o)]}. 

A cyclical model corresponding to the metric (13b) is conceivable with a cycle 
comprising the evolution pancake singularity-barrel singularity-pancake singularity of 
a duration of 2t,, the barrel singularity appearing as a ‘mild’ singularity since the rate of 
variation of the proper characteristic length along the 3-axis becomes zero at time t,. 
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